TensorFlow Serving 记录

模型保存

我们主要使用 Estimator API 进行模型训练,在模型保存接口中

def export_saved_model(self,
                        export_dir_base,
                        serving_input_receiver_fn,
                        assets_extra=None,
                        as_text=False,
                        checkpoint_path=None,
                        experimental_mode=ModeKeys.PREDICT):

if not serving_input_receiver_fn:
    raise ValueError('An input_receiver_fn must be defined.')

input_receiver_fn_map = {experimental_mode: serving_input_receiver_fn}

return self._export_all_saved_models(
    export_dir_base,
    input_receiver_fn_map,
    assets_extra=assets_extra,
    as_text=as_text,
    checkpoint_path=checkpoint_path,
    strip_default_attrs=True)

有一个关键参数 serving_input_receiver_fn,用来指定将来使用 TensorFlow Serving 时 输入的Tensor 类型

模型加载

模型预测